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Factorizable upwind schemes:

the triangular unstructured grid formulation
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Tile upwind factorizable schemes for the equations of fluid was introduced recently.
They facilitate achieving the Textbook Muir|grid Efficiency (TME) and are expected also
to result in tile solvers of unparalleled robustness. The approach itself is very general.

Therefore. it may well become a general framework fox" th_ large-scale Computational
Fhfid Dynamics. In this paper we outline the triangular grid formulation of the factor-
izable schemes. The derivation is based on the fact that tile factorizable schemes can

be expressed entirely using vector notation, without explicitly mentioning a particular

coordinate frame. We describe the resulting discrete scheme in detail and l)resent some
computational results verifying tile basic properties of the scheme/solver.

Introduction

This work is a part of effort going on at NASA
Langley for several years towards constructing a new

generation of the flow solvers (see, for instance Thomas

et, all|, Roberts et al'2). The key idea, that was sug-

gested by Brand|, 3 is to use a special relaxation |ha!

recognizes the mixed character of a system of Pl)l:;s.

Then each sub-factor of lhe system can be treated in

different (optimal for it,) way. It is well-known |,hal

the Euler equations "('onsist" of two different factors:

advection and full-potential operators. The advection

{)art, can be treated very efficiently, say, by the march-

ing relaxation. The full-potential operator is of the

elliptic type in the subsonic regime. Therefore. it, can

be treated very elticimJtly by nmltigrid. In the su-

persolfiC regime it becomes hyperbolic: wave equation

with respect to the flow direction. For Mach mmfl)er

substantially larger than one, the emire system can

be solved efficiently by marching. Nearly sonic sl)eed

regime can be dealt with by mul(.igrid, but requires

some special care.

Solvers based on such a special (Distributive) relax-

atiot_ were constructed initially for incompressible flow

and were based on the staggered grid discretizations.

The optimal muir|grid efficiency was demonstrated

Brand| and Yavneh. 4 Staggered-grid discretizations

exist also for the compressil)le flow equations, How-

ever, they all are limited to the subsonic regime, since

they have no shock-capturing capabilities. The stan-

dard shock-cat)turing schemes, on the other hand, are
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not faclorizable, i.e. they do 1101 toffee| the mixed

character of the PI)Es (see SidilkoverS). Therefore, it

is llO{. possible to COllstrllc[. a relaxalion of Distributive

lype that can be used with these schemes.

(:learly. there is a need for discretizat, ions that are

both factorizable and hav_' shock-cal)turing capabili-

ties. A faetorizal)le upwilM scheme was constructed in

Sidilkover'; for the case of (,_:ar|osian grids. A de|ailed

de,_cription of its extorts|era to the case of structm'ed

body-fitted grids is given in Sidilkover el al. r A set of

numerical resulls was presented in ltoberts el al. s

The purpose of l,his I)aper is to present a cons!rm'-

|ion of a faetorizable st'heine on triangular unstru('-

|.ured grids.

Euler equations and their properties

The non-conservative quasililwar fornmlation of the

compressible Euler equations in three dimensions ('an

be written using vector notation as follows

(la)

(lb)

(l.)

ft. X-s = 0

PiT' X'/7+ X-'p = 0

pc="C . if+ 5- 7"1' = 0,,

where s denotes the entropy and

dp

ds = dp (.2 '

17 is the velocity vector, the pressure l' is given by

_'2

p= (,,, - t)((- :,_@)

(_)

(3)

e=vT (4)

the speed of sound
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In this section we rrcall some of tile t)asi(- properties

of Ill(' equations (1). It is sufficient for the purpose

of the analysis t.o assullte coi{lstancy of the coefficients.

It is known that this system of equations is of the

mixed type: it consists of the adveetion and th_ "_ Full-

1)ol,'nt.ia[ factors. This can Im made ol)vious t)3' intro-

din'tug t.h,' new set of variables.

Recall that a vector field can be decomposed iuto

solel,oidal and irrotational parts

/7 = V * _+ VO. (5)

where O is the potential and : is the streamflmction.

The pressure gradient is related to the gradient, of the

t)olential as tbllows

dt,= -pff . Vdo (6)

Substituting the new variables O and _ into the pres-

sure equation we obtain the Full-Potential equation

p[c'-'V'-' - (g;. V)e]o = 0 (7)

Note, that all the terms involving the st.reanlfun('tion

('alice[ out.

Performing tile varial)le substit.ut.ion in the momen-

tum equations gives

/,ff. V(V x :) = 0 (8)

Note, that all the terms involving the potential vari-

able ('ante] out.

Introducing a new variabh' vorlicity

= ._X( (,())

and applying ol)erator _x to (_), we obtain

/,,7. v_ = t) (iv)

This verifies indeed that the Euler syst, em is of the

mixed type. The advection factor is represented by

the equations for entropy (la) and vorticity (10). The

full-potential factor is given by (7). It also makes it,

clear that (for the linear constant coelticients case) the

mome,,tuuu equations (lb) drive the solenoidal part of

the solution, while the irrotational part of the solution

ix sub.ject solely to the pressure equation (Iv).

In a general nonlinear case (awa), fi'om singularities,

like shocks aud contact discontinuities) there is a weak

coupling between different factors due to the so-called

subl)rincipal terms. This coupling can be neglected

for the purl)ose of the construct.ion of a fast solver (see

Brandt3). Therefore, the latter ('an rely entirely on

lhr analysis of the linear case.

Preparations for the scheme
construction

When constructing a discrete al)proximat.ion to the

t']uler e(luatious, the centra] scheme can serve a I)a-

sic building I)h)ck. However. it. is crucial to include

a certain artifi('ial dissipation in the discr_'tization for

stability reasons. One of the additional prol)lems thau

])ecollles ]lOW to compensate for the loss of accuracy

due to the artificial dissipation. Various ways to deal

with this issu(' received all extensive ('overag( _ ill I]1('

literature. (:onstructing a faclori:afib s('hem_' inq)lies

resolving this issue in a very specifi(' way.

FDA analysis

The First I)ilferential Apl)roximation (FI)A) (or the

modili:d (quarto,s) corresponding to a certain discr_-t.e

scheme is the PDEs augmented by the leading error

refillS.

We shall start our analysis with formulating the

FDA for tile fa.ctorizable genuinely multidimensional

scheme. Tile observation made in regarding the gen-

uinely multidiluensiona] ui)wind scheme introduced in

Sidilkover"' was that a part of the artificial dissipa-

lion i)resent in tile discrete monlentunl e(tuations (iu

subsonic case) ix proportional to the gradient of the

residual of th,' pressure equation. The art ifi(-ial dissi-

t)at.ion of the pressure equation is proportional to t.h,

divergence of the residuals of the lnolllellt.llln equa-

tions. A vector formulation of the entire schenle (el|

the (!artesian grids) is given in Sidilkover. lu

The fact that the entire scheme can be expressed

using the vector notation app('ared to be very instru-

mental for the purpose of extending the fa('torizable

t u the structured bo(ly-fitted grids (See Sidilkover el

a[ 7 and lr'{oberts et alS). It is of very hnportant for the

purpose of this paper too.

The FDA of a factorizable scheme for the Euler

equatiol_s is given bv the following

(t s = 0 ( 11 a)

1
:,q/7 + rt,- -r(/,(._r. _7+ _. Vt,) - VD

(.

= 0 (11b)

o'rl

pc'-"C " ([ + ([" _"1' -- -'_-('_" " (Pff " Vff + _"p)

=0 (tic)

The term VD in the momentum equations plays an

important role when the operator q is discretized us-

ing an advection scheme of a certain type t.o maintain

the second order accuracy and fa.ctorizal)ility of the

whole Euler scheme. This special type of the advection

scheme allows to upgrade the accuracy of the adve('-

t ion factor to the second order without affecting the

discrete full-potential [)art. For now we omit the t.erm

_D and consider (1 t.o correspond to the standard first

order accurate adveclion scheme.

A factorizable schelne corresponding t.o the FDA a_s

given by (11) is stable for subsonic case only. Tile

scheme call be extended so it will I)e valid for tram

soni('/SUl)ersonic regime by a simple modificat.ion: in-
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t roduction of a cut-off paranleter on the ternls involv-

ing pl'eSSlll'e hi lhe arlificial dissipation

q,s = 0 ( 1 2a)

e K

= 0( 12b)

O'p /

poet . 5+ i7. Tp- -72--cT • (pi;. T# + KTI, )

= 0,(12c)

where

a" = nlax(l, M _) (1;{)

We shah denlonstrate the faetorizability properly of

EDA corresponding to the new schenle. Inlroduce the

auxiliary variables 1)olential 0 and streanlfunction _-7

all(-] substitule the following expressions for the vari-

ables i7, p

= (I - °'"--_t_,7. V)V × ('
:2 e

o',, / 1
+V(l .... ,T. V)o (l,/a)

:2 c

<h' = -P(ff V - °"'--ZcV'-')&, (14b)

/

2

into (11). htl.roducing the vortieity variable

fi=v× (I- J-g v)v× j (is)
2 c

and applying the X" x operator to the nlonlent, mn equa-

tions we obtain

,,V. VO = O. (l_i)

Note, that, as well as in the PDE case, all the terms

invoh'ing the potential variable canceled out. Substi-

tuting the auxiliary variables into the pressure equa-

t.ion, it. is easy to verify that all the t.erms inw)lving

the stream function cancel.

\¥e call sunnnarize that due to tile specific form of

the artificial dissipation, the FDA (11) of the discrete

scheme is factorizable - it reflects lhe mixed charaet.er

of the original system of PDEs.

Special discrete operators

\_ consider the two-dimensional case from now on.

When discretizing tile derivatives, a special ('are needs

to be taken of what kind of discrete operators are used

in order to preserve the factorizability property at the

discrete revel.

Note, that when denlonstrating the faclorizabilily

l)roperty of the scheme's FDA (1 l) we used the facts

of lhe following type

g)y_ji).,. = i),wO_, (17)

O,.vO.,. v = G.,.Ov,._

In order to obtain the factorizable discrel.e scheme,

we need t.o introduce some finite differences that pos-

sess the properly al,a[ogous to (17). ,%,oh finite differ-

ences were illtro(]uced for the case of structured grids

ill. _;

We have to find such differences for the ('as(, of

Iriangular grids (see Figl), where (x,y) is a local

(nOl>orthogonat) frame. We shall illuslrate this on

a simple example. ('onsider approximating the par-

l.ial derivative i)a-:,.. Assuming that we have at. our

disposal the "compact" stencil that involves 7 poinls:

0.1.2,3.4,5,6. there is only one way of doing it..

namely by it.t,!.,, defined as follows

e_.... = (.4 - 2,,. + ,1 )/h-' (IS)

Ditferenees defined ill such a way do not have the

t)rol)erty (17). \Ve can conclude that using the con>

pact stencil 7-1)oint stencil only there is no way to

achieve this l)roperty. \Ve know fronl _ that the 9-point

box structured grid stencil is sutllcielfl for this pur-

pose. There are several ways i.o auglnent the coral)act

T-point stencil to tile 9-poinl one in Ill(' current l.rian-

gular grid .oollt.exl. It is c],"ar that the 7-poh)t stencH,

therefore, needs to I)e augmented. We can do it. by

adding to it 6 more nodes: 7.8, 9,10, 11,12. The par-

t.ial derivative 0a-.,. can then be apl)roximat.ed by a w,h

differen('e

(y,p [("4- 2.o + "1)/2
+(.> + .:_ - .._, - .s)/8

+(t, tl + u,;- u,;- ,.r)/S]/h:"

(19)

Tile derivatives Ovu, 0.,., Oq can be apl)roxilnated in the

analogous way. It. is easy to verify that such differences

possess the property (17).

Structure of seine artificial dissipation terms

The central part of the scheme is tile constructed

in the standard way. The artificial dissipation terms

corresponding to tile advection schellle are evaluated

ill the standaM fas]lion as well. A special ('are needs

t.o be taken of tile other artificial dissipation terms.

Recall, that the artiIicial dissipation terms in tile

nlomentunl equations (llb) that are subject to the

gradient operator are the residual of the pressure equa-

tion. l)enot.e them

H r = pc'-'T - /7 + 5- Vt' (20)

and the expressio, subject to the action of the diver-

genee operator h) the pressure equatio)) (]lc) is the

residual of lhe momentum eqtmt.ions

H,,, = pS. g'_+ Y't' (21)
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Constructing the discrete scheme

Our goal now is l,o deriw- a discretization of a con-

servation law (scalar and a syst.em). For this purpose

we need to evaluate the munerical fluxes through each
of the faces of the dual-median cell (see Fig.l).

Global and local coordinate fi'ames

12

Computational grid segment and a control volume.

(ae o, ) (22)tt = _:_ ::I,_ '

where (o¢,i}¢) and (,,,1,3,_) are the unit vectors in

the direction of the _ and q coordinate axes respec-
lively. The relationship between the (:artesian and

comravariam velocity componems is descril>ed as foi-
l OIA'S

(,,) (,,)ff i' = _, (2a)

or

(24),,-,(:,)-_(:,).
The .laeobian of this coordinate rotation

_ 3

4

--%10% /
6

Fig. 2 Nodes used for evaluating the flux through
a face of dual-median cell.

,I = (let It = _3,_ - 3_,_ (2.5)
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The inverse of tile ttessian ft

H-' 1 ( 3,, -av ) (26)= 7 -3_ ,_

It is convenient to use the scaled conlravariant velocity

CODII)oIIeD[,S

(' -Ju = u.,3,I -va, I (;_T)

Th relationship between the (!artesian and cow_rianl

velocity COLLI[)OIIelIIS is giwm by the following

,. V / (2s)

or

lg = uo{ + _,;_'_ (29)
l) _- II('t _j + II!]71

The covariant and covariant veloeilies are related as

follows

.r.(..)__(. ) (a0)

UT/t = ( -_ + ,_--' _*e,,,,+3e4) (al)ae,L, + ._e3., ,_ + 31{

The l.olal velocity squared

[,71"= .'-'+ _.-"= .0 + i4' (32)

Scalar advection

('onsider a scalar advection equation

st + us.,- + _'sv = 0. (33)

The discrete equation to solve for ._ at point 0 is oh-

lamed by balancing fluxes through the surface of the

dual median cell (see Fig.l)

N d

Y_[.l/,,,], = 0. (34)
i=l

where h n is the lenglh of the corresponding face and

the numerical flux

ll,efc.la_,._ 1( ,_
f = -_ + _ _(.'0 + .s'e) (:]5)

where O__ stands for a divided difference

hd)_'s = .,.. - ._. (as)

The discrete equation t.o solve for s at. l)oint 0 is ob-

tained by substitutitlg numerical fluxes evaluated by

analogy to (35) on all the faces of tile dual-median cell

and subslituting them into the flux-balauce equation

(34).

Euler system

Integrating the Euler equations in the conservative

t()l'lll over tile control-volume (dual-median cell) and

applying the Green's theorem, we obtain

/' F.ffdl=O, (37)
('

where 0(' is the control volume's bounclary K is a trait

vector normal to the boun(lary and

F = PU_- + p i + puv j (38)
put' pc '2 + p

( E + p)u ( E -4- t,)t'

A conservative discretization of lhe Euler system can

be written in the following form

Nd

_[F h,,],: o. (3:_)
i=1

The numerical flux through a face can ])e represented

as a sum of central and the artificial dissipation parts

F = F"+ F'* (40)

The central port.ion of the flux is given by

= _[F(,,L) + F(..)].?, if,
Z

(4J)

where now ff = (3_1,-o,_) is a refit vector normal to

the face. The rest of this section is dedicated to the

question, of deriving the diffusive portion of the mm|er-

i('al fluxes.

We would like to emphasize that il is fairly simple

to implement, t.he new discretizaliol_ within the exist-

ing eontrol-vohmle ('olnputer codes. It requires only

tile lleW numerical flux routine. Such a routine can be

writ ten ill several simple steps, starting from the stan-

dard upwind scheme and l)erformillg i.he modifications

gradually.

The standard upwind scheme

The first step is to rewrile the standard upwind for

tile subsonic case without explicit mention of the char-

acteristic variables, el.c. The scheme is given by the

following numerical flux

?'= "f_ = -_/'e. p,'e)_'g'pllklO2V+r"/_a_',, (,12)

f.., :,cca_'r+ _eO,

The derivation presumes that these fluxes correspond

to the local orthogonal coordinate frame associated

with the cell-face. Therefore, the moment.ran equa-

l.ions diffusive fluxes can be rotaled to tile global co-

ordinate frame (x, y) by in the following way

-o,t f3 ) (43)
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The obtain diffusive fluxes correspond io t.he quasi-

linear nonconservative fornudation of the Euler equa-

tions. The ueed to he transfornwc[, therefore, to the

fi_rnJ al)propriate ['or the couservative discretization

where

1 0

M = u 1
r 0

A modiJicd .w'tlem_

ff,l = M /r_ (44)

0 1/c" "_

0 ,/c'-'

I i'/c'-'
P I/(_- I)+(,7._7)/(_c'-')

As an intermediate step towards constructit,g the

factorizahle scheme we can consider the following case:

?,= _!h- +
/:] = 2 < f,l_'la_'v (4<

TIw lnail| difference from the standard scheme is tha!

the n|olnet|t.ulll equations diffusive fluxes (the second

and third cOral)orients) are now attributed 1.o the nlo-

mentllm equations in t.he covarian! directions (_ and

q). Therefore, the trallSfi)rnlation back lo the global

orthogonal franle takes the following |.orm

f'_, }'2
( f3 ) :=(lIT) ' ( f:, ) (4T)

This cliange is necessary towards eventually obtaining

the approximation for the gradient operator term in
(ltl,)

.4noth_ r int, rm, diat( ._tq_

f,= jr._, "ca f:, f,l¢.lagV (4s)

Tht, coeflicien! in front of the pressure difference in

the fourth cOral)orient constitutes the change from the

previous case. It is necessary it] order arrive later to

the approximation of the divergence term

Th_ faclor, zabl_ scheme

Now we shall incorporate the correction (mixed

derivative) terms into the scheme, .so that SOllle of

the terms in the artificial dissipation can be viewed as

residuals of the momentum and the pressure equations

and, therefore, are second order small. The latter mod-

ification together with introducing the wide differences

that possess tiw COlnlmttativity properties results in a

factorizabh schelue, hnt)lelnenl,alion of all these steps

call ])e done ill several steps as well, testing the routine

after each modification.

We start, from re-interpret.illg of some standard no-

lions. A st.andard "uarrow'" divi&d dilDrence can I)o

defined also as

'01 "_' 0l'* _0 q'} ",()"3

i)_' = '% -0_ -+,'_ - o_-"
,S'0l'2 + ,S,0'2:_ (4 9)

Define a "wide dicided difference"

_)h . ,01". Ill'_ --,_ ,023. (193

•0_31, 061 ,18'_ • 18"
+ s O{ + '_ O_

_.]_%'29:?f)_.q3 _[_ :_,(,340_34)/
(2,q<_ + 2 _,'_r-':_+ ,,q_';_ + ,,,'IS'_' + ,q2,_:3+ ,S":3-'t)

(.5¢))

Similarly, we can define P_ and Oh. Adding the some

specific _/-derivative terms (all l.he differences used here

are t_arrow) to the artificial dissipation of the pressure

equation obtain the residual of the mon_entlm_ equa-
lion in !lie direc!ion normal to the cell face

= p(fT0_'+ ¢O_)(T+ ._[0_'+ ("e",, + '_e4)C,,]P')hflrt ',

(51)

VCe also add some !l-derivative ternls to the artificial

dissipation of the momentum equation in _ direction

to obtain the residual of the pressure equation. All

the differences used here are wM_. The notation (I]_

['or the residual) reflects this fact

IRp = pc-tot _ l' + + ( + )p

The artificial dissipation then lakes the following form

_i, ,7 t' m,, /,eel_"lo2a]I ,,, 7_._, +

.F'= ./3 =-_ heelg_la_,v
f .'t rrl, l c'll hr

(..53)

The need for rescaling the artificial dissipat.ion in order

to avoid the quasi-ellipticity of the full-pot.ential fac-

t.ors apl)roximation for the low-speed flow regions was

established in." The scaling parameters 0",,, erp serve

this purpose. In the conducted preliminary numerical

test. (see lleXl section) they were taken to be 1. The

parameter / was taken to be equal t.o h(.

There remains a need t.o introduce some nlodifica-

lions inl.o the central part of the scheme. It is neces-

sary for factorizabtltlqthat the ])ressure gradient term

in the niomentum equations is apl)roximated by dif-

firences. IJsing wM_ differences t.o approximate the

pressure advection operator in the pressure equation

is not necessary for factorizability but. is still benefi-

cial since it results in a better form of t.he discrete
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Fig. 3 Tile computational gri<l.

Fig. 4 Solution: density contours.

full-potential factor. Tlwse modiiications can be in-

trodm'ed in a _ery simple way using a trick by Tom

Roberts: adding certain terms lo the artificial dissipa-

1.iOll. lntro(lu('e the following u,divid,_d difference

"2h_

The arlificial dissipation terms aro then augmented
as follows

/.,
(_5)

74 + ¢'_;I,,P /

Returni0g to the global Cartes|art coordinate frame

(/__ _ f'_,

and converling to the conservative form

This describes the schellle that was used in the pre-

liminary numerical experiment reported below.

Preliminary numerical results

The work on implementing the new scheme within
the FITN2D _1 code has just began. Our very firs! aim

is just to inlplenient the 1)umerical fluxes and to verify
the correctness of the residual evaluation.

The test,case presented is a subsonic flow (Math =

.2) in a channel with a |)ump. The grid consists of

1375 nodes (see Fig.a). A se('Otld order version of the

new scheme was used. The contour plots of densily

art' presented in Fig.4. We also present for compar-

ison in Fig.5 density contours of the solution to the

same problem using the standard se('ond order scheme
with limil,ers switched off'. order upwind schente. Th(,

solution obtained using the new scheme is at [easl as

accurate as the one using the slandard s('hemo.

Fig. 5 Solution obtained using the second order
upwind scheme: density contours.
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